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V A R I E T Y  OF THE R E P R E S E N T A T I O N  O F  T HE  
N O N S T A T I O N A R Y  T E M P E R A T U R E  O F  F U E L  E L E M E N T S  
D E P E N D I N G  ON T H E  F O R M  OF T H E  D I S T R I B U T I O N  
O F  T H E  H E A T  S O U R C E S  

P. V. Tsoi UDC 621.039.517.5 

The author proposes a representation o f  the solution of  the heat-conduction equation in the form o f  

expansions in basis functions that are selected depending on the form o f  the distribution of  the internal 
heat sources. 

The approach to mathematical models of heat conduction with thermal loadings by internal sources that 
envisions a nonstationary process in continuous media with distributed parameters (temperature, etc.) enables 
us, on the basis of the general theory of synthesis and analysis of complex systems, to develop them further 
and offer a new interpretation of results of investigating boundary-value problems of heat and mass transfer by 
an analytical-numerical method [1]. According to this solving algorithm, solution of the equation 

_ ( 1 )  

p (~, m) 0Fo 0 9 (9, m) + ~'0 

with generalized boundary conditions of the third kind in terms of the Laplace transform T(9, P) is reduced to 
the problem 

"~ (~, /~) "~ -- p (~, rn) [ p T  (9,  P) - To] 4- qv (~, P) g2~ m (2) 
£o = 0 ,  

{ -~  + Bi T (9, p)}~=l = Bi [~  (p)+ ~ - ~ ] ,  /~)~=0 = 0 , (3) 

where Fo = at/R2; 1 < 9 = x / R  _< 1 for a plate (m = 0); inside a cylinder and a sphere, 0 < 9 = r /R  < 1 (m = 

1, 2); a = ~y'cy is the conventional thermal diffusivity, which is equal to the actual one with constant thermo- 
physical coefficients; the function ~(Fo) = (p(Fo) + q(Fo)/ct is the generalized temperature of the external me- 
dium; q(Fo) is the radiational influx (q > 0) or radiation (q < 0) of heat. 

The kernel R(9, g) of the integral transform of the expression 3~(~, m) and the system of eigen- 

functions of Eq. (1) are found from the soution of the equation 

(~, m) ~ - / +  g p (9, m) R (9, m) = 0 .  (4) 

For ~,(~, m) = 9 '~ and p(~, m) = ~m, the solutions of this equation are trigonometric (m = 0, 2) and 
Bessel (m = 1) functions. Such a system of eigenfunctions of the corresponding Sturm-Liouville problem 
forms the basis of a strict functional space. Synthesis of the sought solution requires that all input values of the 
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thermal loadings in this space be analyzed in order to represent the temperature in the form of an infinite 
series, which most often converges poorly, especially at small Fo numbers. Therefore A. V. Luikov, in the 
theory of  heat conduction, proposed another solution that makes it possible to perform an efficient thermal 
calculation for the initial period of heating [2]. 

The variety of the representation of solutions in different alternative spaces whose bases are selected 
depending on the form of the stationary distribution of the internal heat sources makes it possible to find the 
temperature fields in the best approximations. We seek the solution of the boundary-value problem (2) and (3) 
for ~,(~, m) = ~m, P .~. ~m, and qv(~, Fo) = qdp0(~)f(Fo) in the space 

/~/1 (~), 1412 (~) ..... Ill n (~)} (5) 

in the form 

n 

T. (~, p) = a, (p) + ]~ sk (p) v~ (~), 
k=l 

(6) 

where the alternative of selecting the coordinate functions ~k is confined just to homogeneous boundary con- 
ditions (3): 

- ~ ) ¢ = o  = O,  

1 
~ - - ~ + B i ~ ( ~ ) ~  = 0 ,  v k = l ,  2 ..... n .  

J ~,=1 

(7) 

The procedure for realization of the orthogonal projection of the discrepancy leads to the matrix transformation 

- -  r , / ? - - 2  

IrA +pal l  Ila (p)ll = [T O - p  ¢ (p)] IICII + .Z~_f (p )  IlDII, (8) 

where the matrix elements are found from the formulas 

d (~.md~Ik] 1 
= ~k Vj ~ d~ + Bi (VkVj)~=I = Akj Aik -Jo-~(  ~ --~-J ~j(~)d~=~ ' ' m o  > 0 ,  

1 1 1 

0 0 0 

(9) 

The solution of system (8) by the Cramer formula will be 

[T o-p(I)  (p)] A (c) (p) qvR 2 f (p )  A (°) (p) 
ak (P) = + - -  a (p) ~. A (p) 

(lO) 

n 

where A(k~(p) = Y~NjAjk(P); Ajk(p) are the algebraic complements of the basic determinant A(p) = ]A + p B  I . 
j=l 

Upon passing from problem (2) and (3) to transformation (8) the matrices IIAII and Ilnll interpolate the 
self-adjoint differential operator along the elliptic coordinate ~ in Eq. (1); therefore, as formulas (9) confirm, 
they are symmetric and positive. 

Consequently,  the roots of the equation A(p) = 0 will be different and negative. We denote them by 
Pk = _p~n) in the ascending order of positive numbers p~n) < p(2 n) < ... < p(nn) (p(k n) > 0). 
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The transfer functions A(~(p)/A(p) are proper fractions in structure of  representation and by expanding 
them in simple poles of the denominator in (10) we obtain 

" A~o)(-pl ")) f(p) n A~C)(_pln) ) [To_p . (p) ]+qvR2 Z . (n, 
ak (19) = Z z~ ( -  p}n)) p + pl n) ~, A" (-- pl n)) p + Pi 

i=1 i=1 

(11) 

which is the formula of synthesis of the elements of  the matrix-response [[a(p)H to sums of blocks of elemen- 
tary inertial links. This representation makes it possible, for specific forms of  the thermal loadings ~(p) and 
tip), to take inverse Laplace transforms of the same type in each block and write the temperature (6) in the 
domain of the inverse transforms. 

According to the method of selecting basis coordinates [1] for qv (~, Fo) = qvflFo) and t00(t) = 1 the 

Bi + 2k ~2k, and the coefficients (9) are easily written in terms of  recurrence optimum system will be tgk(~) - Bi 

formulas in the integers i, k, and m, which enables us to compose a program for writing the algebraic system 

(8) in explicit form of any order for each body individually (m = 0, 1, 2) and for n > 3 for a specific Bi 
number. 

From the truncated system of f'wst order, 

- A (Bi, m) [T O - p O  (p)] 
al (p)= 

2 (m+ 1) [p+A (Bi, m)] 
+ qvR2 f ( P )  (12) 

2~, (m + 1) p +A (Bi, m) ' 

where 

Bi (m + 1) (m + 5) [Bi + (m + 3)] 
A (Bi, m) = 

2Bi 2 + 2 (m + 5) Bi + (m 2 + 8m + 15) 
(13) 

For ~(Fo) = Tm + q/~x = const and fiFo) = 1, the relative excess temperature in fuel elements of the three 
geometric shapes is found by the single formula 

0 (~, Fo, Bi, m) - 
T (~, Fo) - r 0 

(T m + q/cx) - T O 

A2 (m(Bi'+ re)l)/Bi~ll + 2 ) = 1 ~- ~2 exp [ -A  (Bi, m) Fo] + 

qv R2 (Bi + 2 _~2)  
+2~, (m+l)[ (Tm+q/a) -To]  ~ Bi {1 - exp [ - A  (Bi, m) Fo]}, (14) 

where Tm is the temperature of the medium. 
The temperature changes due only to the internal sources for fiFo) = 1 - exp ( -  Pd Fo) and fiFo) = 1 

+ Fo exp (-Pd Fo) are determined by the expressions 

qv R2 (Bi + 2 _ ~ 2 )  x 
T(~, Fo, Bi, Pd, m) = To+ 2~, (m + 1) ~ Bi 

× I1  Pdexp  [ -A  (Bi_L,m) F o ] s A e x p ( - P d F o ) ~  

t P d - A ( B i ,  m) ] '  
05) 
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TABLE 1. Coefficients A and First Eigenvalues of  the Characteristic Equations ~1 [1] for Different Bi 

2 
m A(Bi, m), I.tl O. 0.02 0.1 

A(Bi, 0) 0.0 0.02 0.097 0.352 
0 ~t2(O) 0.0 0.02 0.097 0.352 

a(Bi, 1) 0.0 0.141 0.195 0.725 
1 

Ia2(1) 0.0 0 . 1 4 1  0.195 0.725 

A(Bi, 2) 0.0 0.060 0.294 1.109 

2 ~t~(2) 0.0 0.060 0.294 1.108 

Bi 
0.4 10 0.8 

0.626 

0.626 0.740 

0.321 1.579 

0.320 1.577 

2.052 2.471 

2.051 2.467 

qvR 2 (Bi + 
T(~,Fo,  Bi, Pd, m ) = T 0 +  2 (m+ 1 ) £ ~  Bi 

1.0 2.0 
0.741 1.163 

1.160 

2.571 

2.558 

4.141 

4.116 

2 - ~ 2 ) X  

50 ~, 
2.063 2.063 2.500 

2.042 2.042 2.467 

4.884 5.761 6.00 

4.750 5.556 5.783 

8.400 1 0 .0 6 9  10.50 

8.045 9.486 9.870 

+ A [exp  ( -  A Fo) - exp ( -  Pd Fo) 
× 1 - e x p ( - A F o )  ~ [  -A---P-d + 

exp ( - P d F o ) ] } ,  + F o  (16) 

which satisfy all the boundary conditions of the problem and, after the transient regime, coincide with the exact 
solution 

qvR 2 ~ai  + 2 _ ~2) (17) 
lim T(~ ,Fo ,  Bi, Pd, m ) = T o + 2 ~ , ( m + l ) ~  . 

Fo--~oo 

In solutions in the second and subsequent approximations for the class of problems with the conditions 

lim f ( F o )  = lim p f ( p )  = 1 
Fo---~ p---m 

_ q~R 2 
l i m a  1 (Fo)= lim pa  1 ( p ) -  

Fo--~ e---m 2~, (m + 1) (18) 

we will have the limiting equalities 

m 

l i m a  k (Fo) = lim pa  k (19) = O, v k  > 2 ,  
Fo--~ p----~ 

i.e., the property (17) is retained and the temperature is refined only on the small time interval of the transient 
regime. The indicators of  the rate of stabilization in formulas (14)-(16) should be comparable with the first 
eigenvalues of the characteristic equations [2]. Such comparisons are given in Table 1. 

The approximate solution (14) virtually coincides with the exact one for the numbers 0 < Bi < 1 for all 
values of Fo, while for the remaining Bi there is satisfactory agreement for the period Fo > 0.05. 

For the temperature inside a round bar with constant heat sources, from a partial sum and even the 
infinite series of the exact solution 

0 (~, Fo, Bi) = 
T Fo) - T o 

(T m + q/tz)  - T O 

2 
- E AkJo (l'tk~) [1 - exp (-  ~t k Fo)] + 

k=l 

A/e/0 (Vtk ) 
+ Po X7 L., g2 

k=l k 

2 
[ 1 - exp ( -  Ix k Fo)] ,  (19) 
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TABLE 2. Expressions for the Coordinate Functions 14t~ ~) and Roots of the Equation A(p) = 0 for eP(Fo) = To and 

fiFo) = 1 for Different n and k 

n k 

1 1 

1 
2 

2 

1 

3 2 

3 

1 _~2 
1.1000 - 1.5288~ 2 + 0.4288~ 4 

-0.1000 + 0.5288~ 2 - 0.4288~ 4 

1.1076 - 1.5984~ 2 + 0.56603~ 4 - 0.0752~ 6 

-0.1308 + 0.8900~ 2 - 1.2800~ 4 + 0.5208~ 6 

0.0232 - 0.2916~ 2 + 0.7140~ a - 0.4456~ 6 

6 

5.7841 

36.882 

5.7832 

30.712 

113.50  

where 

2J1 (}'[k) qv R2 
Ak - gk [~  01k) + J~ (~tk)] ' P o -  ~, [(T m + q/o0 - TO] 

we can no longer find explicitly the limiting property (17). Only upon taking into account that with the aim of 
synthesizing the sought quantity in the form of  (19) the input thermal loadings (of the external source 

Tm+ q/o~ ;e TO and the internal source qv(~, Fo) = qv = const) were analyzed and another unknown quantity 

) • | ' - ~ - - - ~ 2  that is related to the solution of the stationary problem was additionally synthesized: 

0o AkJ0 1 [ 2 _ ~2) 
= E AkJo ("k~), E (~t~) _ trBi+ • 1 

~ t  ~-1 ~t~ 4 ~ Bi 

can we, by introducing these values into (19), improve the convergence of the series and obtain the limiting 

equality (17). 
In the solving algorithm, the greatest computational error is obtained when Bi ----> oo, and for the cylin- 

der the refinement of the solution in subsequent a~proximations with boundary conditions of  the first kind in a 
space with the coordinate functions ~k(~) = 1 -~ .k  for ~(Fo) = To and fiFo) = 1 leads to the expression 

n 
4~, iT n (~, Fo) - To] _ 1 - ~2 X q/~n) (~) exp (_p~n) Fo) ,  (20) 0. (~, Fo) - 

q~j{2 k=-2 

calculation results are given in Table 2. 
A considerable excess of  p(n n) over the exact value bt2n and a large deviation of II/(n n) from the exact 

eigenfunction follow from the fact that expression (20) interpolates the polynomial of exponential functions [3] 
by a smaller number of components than in the partial sum of the exact solution. For example, the solution 
(20) for n = 3 is equivalent to the partial sum of fifth order in convergence. 

Temperature profiles at various instants and a comparison of the third approximation with exact values 
are given in Fig. I. The temperature 02(~, Fo) virtually coincides with 03(~, Fo) and gives only very small 
disagreements in the time interval 0.01 < Fo < 0.05. 

For the parabolic distribution qt,(~, Fo) = qvf(Fo)(l + ~2),  the optimum basis coordinate will be q/l = 

2(m + 3)(Bi + 2) + ~(m + l)(Bi + 4) 
Bi - 2(m + 3)~ 2 - ~(m + 1)~ 4, and the variety of the representation 

n 

k=2 

(21) 
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0.8 ~ ~  

O.6 

0.2 0.0~ -~-"-~... 
i i 

0 o.2 O.4 a6 0.8 
Fig. 1. Temperature distribution along the radius in a fuel element of cir- 
cular cross section: solid lines) exact solution; points) calculation by for- 
mula (20) for n = 3. 

for a series of problems with the conditions lim pf (p) = lim 3~Fo) = 1 leads to the equalities 
p--e0 Fo--e ~ 

_ 

lim pa t (p) = l i m a  1 (Fo) - ,lim pa k (p) = 0,  vk > 2 ,  
p--~0 Fo---~ 4~, (m + 1) (m + 3) p--e0 

(22) 

i.e., the solution (21) for p ---) 0 (Fo ---) oo) will coincide with the exact temperature of the stationary problem. 
From the truncated system (8) of first order for m = 1 and (I)(Fo) = To, 

a I ( p ) = - -  
q~R 2 A (Bi, 6) f (p)  (23) 

16~, p+A (Bi, 5) ' 

10Bi [Bi (3~ 2 + 16~5 + 24) + 24 (~2 + 4~ + 4)] 

A (Bi, ~5) = Bi 2 (462 + 256 + 40) + 40Bi (52 + 5~ + 6) + 120 (~ + 2) 2 " 

For a stationary heat source (f(Fo) = 1), 

qv R2 (Bi (4 + 8) + (8 + 46) 
T (~' F°'  Bi' 5) = T° + - ~  ~ Bi 

x {1 - exp [- A (~, Bi) Fo]}, 

4~ 2 -- ~3~4)X 

whence for q~(~, Fo) = q~(1 -~2) we find 

(24) 

(25) 

1 q~j~213Bi+4_ ~ ) 
T(~,Fo,  B i , -  )=  1--~-~ 4~2+~ 4 { 1 - e x p [ - A ( B i , - 1 ) F o ] } .  (26) 

The quantity A(Bi, -1) by formula (24) better agrees with lx2(Bi) than expression (13) at m = 1. However 
a uniform excess that exists in formula (13) with increase in the Bi number is already broken for A(Bi, -1). 

According to formula (24) the quantity A(Bi, -1) agrees better with ~t~(Bi) than expression (13) for m 
= 1. However the uniform excess that exists in formula (13) with increase in the Bi number is already broken 
for A(Bi, -1). 

According to (24) A(oo,-1) = 5.7895, and it exceeds the exact value ~t~(oo) = 5.7831 by only 0.1%, 
while at the point Bi = 1 we have a maximum deviation of 1.34%. Unlike the P2rocess of heat conduction, for 
qv(~, Fo) = qv = const the monotonicity of the deviation from the exact value ~h(Bi) is broken when the char- 
acter of the dependence of the temperature stabilization on the Bi number is somewhat different because of the 
nonuniformity of the distribution of the local heat sources. For example, in another parabolic distribution qv(~, 
Fo) = q~(1 + ~2)flFo), according to formula (24) we have A(IO; 1) = 5.055, A(,,% 1) = 6.232, and the consider- 
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able excesses over the exact eigenvalues g2(10) = 4.750 and g2(~) = 5.783 are validated by the fact that the 
largest release of heat occurs in the layer at the body surface { = 1 and this heat is removed more rapidly to 
the external medium, which governs the high coefficients of the rate of  stabilization of the temperatures. We 
note that the rate of exponential stabilizations in synthesis spectra of the fuel-element temperature in a strict 
nonalternative space does not depend on the character of the distribution of  the heat sources, i.e., the principle 
of optimum representation of  the solution is absent. 

By virtue of  the nonuniformity of the neutron power flux the distributions of the heat sources in the 
fuel elements of the cores of nuclear power plants become coordinate- and time-variable. In [4], B. S. Petuk- 
hov et al. propose interpolation of the stationary part of  such a distribution by trigonometric or Bessel func- 
tions. 

For a plate (0 < ~ < 1) with a source qv(~, Fo) = qv sin r~.f(Fo) with the boundary conditions T(0, Fo) 
= T(1, Fo) = To the solution (6) in the space {~k(~) = sin r&{} leads to 

a 1 (p) = qvR------~2 f ( P )  a k (p) = 0 v k ¢: 1 (27) 
~, p +/ i ;  2 ' , , 

and for a linear rise of the heat sources (fiFo) = Fo) we find the exact solution 

T (~' F°) = T0 + ~ - ~  sin n~ { F° . 1 - exp ( -  rc2F°) l /~  2 (28) 

Inside a round bar with qv(~, Fo) = qjo(la,~)flFo), where P-i is a root of the equation J0(g)/Jl(g) = 
g/Bi,  the representation (6) for {~k = J0(g~)} leads to the formulas 

ai (p) _ G R2 f ( P )  - (29) 
- -  2 '  a k ( P ) = 0 '  v k ~ i .  

~, p+~t ;  

The exact solutions for an arbitrary fiFo), fiFo) = Fo 2, and f(Fo) = exp (fiFo) are equal to 

T ({, Fo) = T O + ---if- J0 (g,~;) f (x) exp [ -  g~ (Fo - x)] dx , (30) 

T(~,Fo)=To+q.~jo(}.tz~){gi-6 [Ia. i4 Fo2 _ 2 F o  ~t~ + 2 (1 - e x p  ( -  kt~ Fo))]} , (31) 

e . . . .  ( 2 } 
T (~, Fo) = T o + qvR2 J (B,~) xp ( f  Fo) - exp - gi Fo) 

~, 0 f +la~ " 
(32) 

In the previous problem inside a plate we consider another positive source qv(sin ru~+0.5 sin 
2rc~)f(Fo), and then determination of the solution (6) for the first principal (optimum) coordinate function ~1 = 
8 sin rc~ + sin 2 ~  yields 

al (19) = qv R2 Plf(P) 68 2 
- -  - - ,  P l = - -  n = 10.325, 
8rc2~' P +P l  65 

(33) 

whence for fiFo) = 1 
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- Z  + q~R2 (sin ~2~ + sin 2 ~ ] "  1 
T ( ~ ' F ° ) -  0 ~ ( ~2 T j  [ - e x p ( - 1 0 . 3 2 5 F o ) ] .  

The solution of  this problem in the strict space {~k(~) = sin rck~} leads to the coefficients 

(34) 

al (P) qvR2 f (p )  qvR 2 7(/7) - 
- - -  a k ( p ) = O  v k  > 3 3, p+rc  2 '  a2 ( p ) -  2)~ p + 4 n  2 . . . .  

(35) 

and instead of (34) we obtain the exact solution 

T (~, Fo) = To + ~ sin rc~ {1-exp (- rc2Fo)} + q~-~22 × 
8Z, n 

× sin 2/r~ {1 - e x p  ( -  4rcZFo)}. (36) 

Thus, in determining the solution (19) we expanded the source qv(~, Fo) = qv = const into an infinite number 

of  internal sources with nonuniform distributions, and under the sign of  the second sum we have the results of  
a search for the eigensolutions of these sources. At the same time, a direct search, by a constant internal 
source, for its own response in the space of power polynomials led to the representation of the temperature by 

Bi + 2 ~2 in the best approximation. Clearly the the simple formula (14) along the optimum axis q/l(~) = Bi 

same calculations were performed in determining the solution (34), which with an indicator of the rate of  sta- 

bilization of 10.325 (re2< 10.325 < 4n2), rapidly coincides with the exact solution. 
For the temperature field T(~, Fo) inside a round bar of  finite length ( 0 < ~  = r/R< 1; 0 < r l  = 

z /h  < 1) with heat insulation of the ends z = 0 and z = h and heat removal through the peripheral surface to a 
medium with a temperature To with the source q~(~, r 1, Fo) = q~/0([t~)(1 + cos ml)fiFo) the principal coordi- 
nate function will be 

1 +  cos~ 
XI/1 (~, 'l])= )£~ ~ [ ~ 2  JJo (~t~) R 

, [ 3 -  ( 3 7 )  
h 

The solution in the form (6) of the best approximation leads to the coefficient 

2 "~ 
al (P) = qv R2 A (~i, ~)Y(P), A (~i, ~) : ~ti (3ILI'~ + 2rc2 [32) (~t7 + rt2 [32) , (38) 

p + a (gi, ~) g4 + 2 (g2 +/t2~2)2 

and the temperature for f iFo)  = 1 is equal to 

T(~,q, Fo):To+q~-~-f l+ c°s~rl  ./1 I [3)Fo]}. (39) A, k~ i ~2 + ~[32) JO(~z~)-l-eXp[-A(~[i' 

If we consider two axes with the coordinate functions ~1(~, 1]) = J0(~q~) and ~2(~, 1"1) = Jo(~ " ~) cos 
rcq, we obtain 

a 1 (p )_  qvR2 f (P )  a2(P)= qvR2 f (P )  
x p + + 2 2) (40) 

and instead of (39) we find the exact temperature from the two eigenspectra of the expansion 
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Fo) qvR2 {l = X~t--~.2 J0 (H,~) - exp 

qv R2 cos/tT I ( 2 /1;2132) Vo]}. + J0 (,,e,) {1 - exp [-  + 
~. (~t 7 + 1t~[3 2) 

(41) 

In all the found one-component representations of the temperatures, we denote the expressions in the 
braces { ... } by Q(Fo) and the function of the running coordinates % and 1"1 by 0(~) or 0(~, q), and then we 
obtain 

x [7 (9, n,  Fo) - T o] 

qvR 2 Q (Fo) 
= 0 (9, 11)- (42) 

For example, for the temperature (15) we have 

Q (Fo) =J1  Pdexp [ - a  (Bi; m ) F o ] - a  exp ( -  P d F o ) t  

l Pd - A  J 

1 (Bi + 2 
0(%)=m'~-i'+l[ Bi -%2/" 

According to [51, the family 0(%, q) = ei = const will be called the set of geometric images (general- 

ized isothermal surfaces) on which the fuel-element temperature is similar to the isothermal surfaces of station- 

ary (lira f i f o ) ) =  1)or  quasistationary (lira f (Fo))  ~: const)regimes at any instant. Consequently, inside the 
\ F o  --* o~ J \ F o  ---) oo / 

heat-releasing body (the fuel element), depending on the thermal state (on the form of the distribution of the 
heat sources) we determined the variety of Riemannian spaces in which the system of isothermal surfaces that 
is prescribed at a certain instant remains a system of isothermal surfaces at any instant. The necessity of solv- 
ing this problem in a more general formulation was stated as early as 1861 by the Paris Academy of Sciences 
[5], and a fundamental theoretical investigation was performed by B. Riemann. 

The solving algorithm makes it possible to conduct similar investigations in heat-releasing bars with a 
two-dimensional profile of  the cross section (a triangle, a sector of a circle, an ellipse, a segment of  a parabola, 
etc.). 

For a rectangular profile of the cross section D{-h <x < h,--b <_y < b}, the heat-conduction equation in 
the variables % = x/h, rl = y/b, and Fo = at/h 2 for the transform T(~, 1"1, p) is reduced to the form 

02I" ~2 a2~ qv (~, rl) h 2 - h 
- ~ +  - ~  -[p~(%'rI'p)-TO]+ X f ( p ) = 0 ,  ~ = - ' b  (43) 

In induction heating of a metal bar of square cross section (15 = 1), the internal source is found [6] using the 
function 

15qvh2 [92 (I - qa) + 112 (1 - %4)]f(Fo). 
qv (9, r l ) f (F°)  = 16X 

(44) 

The problem of determining the temperature field for fiFo) = 1 and heat insulation of  all four sides is 
solved in [1], where the isothermal surfaces and the lines of distribution of  equal strengths of  the heat sources 
(44) are given. It is significant that the temperature fields inside all bars with the above cross-sectional profiles 
with boundary conditions of  the first kind are determined within the linear composition 
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n 

Tn (9'13'P) = - ~  + Z ak(P)~tk(~'rl) (45) 
k=l 

as the solution of the same equation (43) but in different functional spaces {~k(9, rl)} whose coordinate func- 

tions are related to composite functions of  the boundaries of the regions D. For example, for a rectangular 

tetragon the composite equation of the boundary of  the region D will be (1 - ~2)(1 - 1"12) = 0 and the composite 

function m(9, rl) = ( l - { 2 ) ( l - r l  2) 2 0, V{, r l S  D, while for an isosceles triangle D{y< x, y>--~x, 

0 < x _< h} we will have ~a~(9, 1"1) = ({2 _ T12)(1 _ ~). Inside a parabolic segment D{x > ~ y2 0 < x < h } the com- 

posite boundary function is equal to co(~, 11) = ( ~ -  t iE)(1- 9); it vanishes on the boundary, and to > 0 inside D. 

For the heat source qv(~, rl)flFo) = qu(2 - 112 - ~2)f(Fo) inside a rectangular bar in the space {~k(~, rl) 

= ( 1 -  {2)(1-  rl2)~2(k-1)rlZ(k-l)} along the first coordinate axis we find 

_ qv h2 2.5f(p) (46) 
al  (P) = - -  

~, p +2.5 (1 + [~2) ' 

whence and using the representation (45) the solutions in the first approximation for the two forms f iFo)  = 1 
and fiFo) = 1 - exp ( -Pd  Fo) are reduced to the expressions 

qvh2 ( 1 - ~2) ( 1 - -  1] 2) X 
T (~, n, Fo) = T O + ~, (1 + ~2)  

x {l - e x p  [ - A  ([$) Fo]}, A (~) = 2.5 (l + ~2), (47) 

T (9, rl, Fo, pd) = T0 + qvh2 (1 _~2) (1 _q2) × 
(1 + ~2)  

{ Pd exp [ -  A (~) Fo] - A (13) exp ( -  Pd Fo)} (48) 
× 1 

Pd - a (~) 

Only inside a square bar ([3 = 1) do these solutions after the transient regime coincide with the exact solution 
of  the stationary problem. 

For the internal heat source of induction heating (44) and constant boundary conditions of  the first 
kind, the solution of the best approximation will be 

2 
T (~, rl, Fo) = T o + ~ (1 - 94) (1 - q4) {1 - exp ( -  6.429 Fo)}, (49) 

in which the generalized isothermal lines are similar at any instant to the exact isothermal lines of  the station- 
ary problem. 

If, in a square bar, we set qv(~, 11, Fo) = qv cos kti ~ cos ~tjl]f(Fo), where ~t i and ~tj are any fixed roots 
of  the equation cot ~t = H/13i realization of  the method in the space {~kn(~, I]) = cOS ~t k 9 Cos ktn 1] } causes 
the internal source to seek its eigensolution in the form 
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Fig. 2. Isothermal surfaces 
sion in the heat source. 

C° A 
, -  

m a square bar and the interface of sign inver- 

qvh 2 
T (~, q, Fo) = T O + ~ COS ~tz~ cos girl × 

{F! } x f (x)  exp [-  (g~ + g)) (Fo - "0l dx . (50) 

Let us consider another distribution qv({, q, Fo) = qv(2- 3~ 2 -  3~2)f(Fo) where q~(~, q,  Fo) > 0 inside 
the circle {2 + ~lz < 2/3 and qv(~, 11, Fo) < 0 in the remaining part of the square D{-1 < ~ < 1, -1  < 1] < 1 }. 

The nonstationary temperature field inside a bar fuel element of  square shape with adiabatic walls and 
an alternating stationary distribution (fiFo) = 1) is found in the best approximation by the formula 

T(~,TI, Fo)=To+--  ~ -2~2+r14-2r12+- i -  ~ {1 - e x p ( -  10Fo)}, (51) 

in which the exact temperature distribution is established after the transient regime (exp (-10Fo) = 0). The 
isotherms 0(~, I"1) ---4~T-To)/qvh2[ 1 - exp (-10Fo)] and the boundary of the zones of  sign inversion of 
qv(~, 1"!, Fo) are given in Fig. 2. We note that after redistribution of the uniform initial temperature To a zero 
isothermal line (0 = 0, T =To) is established in the zone where heat is absorbed. Whereas in induction heating 
and heat insulation of the walls from the external medium the temperature of the body increases linearly [1] 
with time, here enthalpy increase is absent. 

Determination of the temperature inside a bar of isosceles triangular cross section with the heat source 
q,,(~, 11, Fo) = q~flFo) with a constant temperature on the sides equal to To as the principal response along the 
first coordinate axis for ~1(~, 11) = to(q, rl) = (~z _112)(1 _ ~ )  leads to the formula 

o 

_ 10.5%h" f ( p )  A ([3) = 7 (~2 + 3 ) ,  (52) 
al (P)- - - - - -~-  p + A ([3)' 

whence the temperature with constant sources (f(p) = I/p) is found in the form 

3qvh 2 
T(~,, n, Fo, 13) = T O + (~2 _ q2) (1 - 9) {1 - exp [ - A  (13) Fo]}. (53) 

29~ (~2 + 3) 

In this solution, only for an equilateral triangular cross section will the isothermal lines at any instant, which 
are similar to a closed composite boundary function tx~(~, 1"1) > 0, coincide with the isothermal lines of the sta- 
tionary temperature of the exact solution of the problem formulated. 

Inside an isosceles triangle with a right apex angle we will consider (]3 = 1) a heat source whose sta- 
tionary distribution increases linearly from zero to qv = const along the height of the triangle, i.e., qv(~, rl, Fo) 
= q~.f(Fo). Then instead of formula (52) we will have 
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Fig. 3. Generalized isothermal surfaces that are similar to the composite 
boundary function of  a parabolic segment and are caused by a special dis- 
tribution of the heat sources. 

al  (p) q, h2 P l f (P )  
- - - - - ,  P 1 = 2 8 ,  (54) 

4L P+Pl  

which will enable us to find the temperature as in all other cases for any prescribed control function fiFo). For 
example, for f iFo) = 1 

qvh 2 
T (~, r I, Fo) = T o + - ~  (~2 _ 112) (1 - ~) {1 - exp ( -  28 Fo)}, (55) 

where now the composite boundary function m(~, 11) will coincide with the isothermal lines of the exact solu- 
tion of  the stationary temperature of  the steady-state regime. In the general  case, it is required that the form of  

the distribution of the heat source qv(~, 11, Fo) = qv~P0(~, ~])f(Fo) be found  for which the composite function of  

the closed profile of the bar cross section m(~, 11) will describe generalized isothermal lines, i.e., will coincide 

with 0( 9, 11) in formula (42). The function q)0(~, rl) is determined accurate to a constant factor and is equal to 

a203 ~2 a203 
the expression ~ + - ~ .  For  example,  for an arbitrary isosceles  triangle this expression is equal to 

-2[([$ 2 - I) + (3 - ~2)~], whence for an equilateral triangle [$2 = 3 and ~00(~, rl) = 1 = const, and for a right 

triangle [$2 = 1 and ~00 = ~. For the parabolic segment D{x_>-~h,y, O < x < h }  we found the function ¢o(~,rl) = 
b" 

0203 132 a203 -211 + [$2(1 - ~)] and when a constant tempera- (~-112)( 1 - 9 ) ,  ~ = x/h,  1"1 = y/b.  Therefore ~~-5 + 3112 - 

ture is maintained on the fuel-element walls the internal source qv[1 + [32(1 -~) l / (Fo)  produces a thermal state 

for which the isothermal lines at any instant are quasisimilar to the composite equation of  the cross-sectional 

profile. The temperature inside such a bar with the parameters h = b ([3 = 1) for the source qv(~, rl, Fo) = 

qo (2 -  ~)f(Fo) is found as 

q~h" 
T (~, rl, Fo) = T o + ~ - -  (~ - n 2) (1 - ~) A (~) × 

760 



F o  

x I f (x)  exp [ -A  ([3) ( F o -  "r)] dx 
0 

, A (1)= 17.873. (56) 

According to formula (42), 

Fo 

0 (~, 11) = 0.5 (9 - 1"1 z) (1 - ~),  a (Fo) =A (1) I f(x) exp [ - a  (1) (Fo - '~)] dx 
0 

and the largest value is 0(0.5, 0) = 0.125. Closed generalized isothermal lines for 0* = 80 that are calculated 

by the formula • = 4 (1 - -9 ) )  are given in Fig. 3. 

To compare the rate of stabilization of the solution with the stabilization of the temperature~ in round 
. z l.  'z, 

and triangular bars, we refer the Fo number to the equivalent radius R = 2S/~,  where S = ~-h'; ,3~ = 
4d + 2h; d is the length of four equal chords inscribed in a parabolic arc. Then R = 0.505h and the first eigen- 
value is Pl = 4.559, while for an equilateral triangle and a circle, g2 = 4.525 and g2 = 5.783, respectively. 

Investigation of problems of nonstationary heat conduction in three-dimensional axisymmetric bodies of 
revolution (~ = ~, r I = ~ 42, ~ = z/b) leads to solutions of intermediate boundary-value problems for the 
equation 

2 (57) 

Thus, whereas in classical methods of  mathematical physics the heat-conduction equation is trans- 
formed, depending on the shape of the body, to cylindrical, spherical, and other curvilinear coordinates, in the 
computational algorithm proposed the equations of the processes of nonstationary heat conduction for bodies of 
any geometric shape are solved in a rectangular coordinate system x, y, z, and the variety of the representation 
of the solutions in different alternative Riemannian spaces is achieved by a wide possibility for selecting the 
system of basis coordinates, depending on the geometry of the body and the internal and external conditions of  
thermal loadings, which made it possible to express the temperature fields in the best approximations by simple 
functional dependences. 
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